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Adaptive Packet Spraying
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Adaptive Packet Spraying
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APS is very popular and widely deployed
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Silent Failures are a Problem for APS

Does not
know about
black hole
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Source Switch is Unaware of Failure!

Does not
know about
black hole
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Source Switch is Unaware of Failure!
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All Cross-switch Flows affected!

Do not know
about black
hole
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How do we identify silent
failures in APS networks?
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Spatial Symmetry of Pristine Network
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Spatial Asymmetry of faulty Network

FlowPulse; Jakob Krebs, Dimitry Gavrilenko, Daniel Amir, Shir Landau Feibish, Mark Silberstein

12



How do we identify silent
failures in APS networks?

-()- Look at Asymmetries (©)
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How do we identify silent
failures in APS networks?

-()- Look at Asymmetries (©)

Not really...

FlowPulse; Jakob Krebs, Dimitry Gavrilenko, Daniel Amir, Shir Landau Feibish, Mark Silberstein



Large networks are never pristine.
There is No Spatial Symmetry

Preexisting failures are indistinguishable from new ones

FlowPulse; Jakob Krebs, Dimitry Gavrilenko, Daniel Amir, Shir Landau Feibish, Mark Silberstein

15



Insight: APS Networks are Predictable
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Silent Failures change the Topology

R DOme

How do we know the demand?
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Al Training is Predictable

Demand explicitly declared in CCL

Example: Data Parallel AllReduce

Known Traffic Matrix
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We know demand over time
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How do we identify silent
failures in APS networks?
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Bandwidth (GiB/s)
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Highlight: Analytical Prediction matches

Simulation

e 2 Level FatTree
e 32 Leaf Switches
e 1.5% Packet loss

[ Simulation -@®- Analytical Prediction
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Number of Failed Links

0% FPR @ 1.5% Packet Loss per Link
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Conclusions

* APS amplifies effect of silent fault
* APS are predictable

* FlowPulse leverages Workload and Network Predictability to
detect silent failures
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